Electrochemical Water Oxidation for Hydrogen Peroxide Generation and Its Applications in Environment Fields

Authors

  • Jian Cai

DOI:

https://doi.org/10.62051/kq64xg37

Keywords:

Electrochemical Water Oxidation; H2O2 Generation; Modification strategy; Environmental applications.

Abstract

Hydrogen peroxide (H2O2) is widely used in the field of biochemical disinfection due to its oxidizing property and environmental friendliness. Its demand is also increasing year by year in industries such as textiles, papermaking, and water treatment. The anthraquinone method is currently the main industrial method for producing H2O2, but this method involves multiple steps, and H2O2 separation and purification is difficult. The direct synthesis method also has problems such as high energy consumption and low safety. Instead, electrocatalytic water oxidation reaction (WOR) is a convenient, economical and environmentally friendly way, with advantages such as simple reaction conditions, clean production and safe reaction process. This review summarized the reaction mechanism, performance characterization, various electrocatalysts and modification methods, practical applications, summary and outlook for WORs for H2O2 production.

Downloads

Download data is not yet available.

References

[1] Q.J.J. Baek, N.S. Johnson, Y. Jiang, R. Ning, A. Mehta, S. Siahrostami, X. Zheng, Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide, Nature communications 3 (2022) 7256.

[2] S. Mavrikis, M. Göltz, S.C. Perry, F. Bogdan, P.K. Leung, S. Rosiwal, L. Wang, C. Ponce de León, Effective Hydrogen Peroxide Production from Electrochemical Water Oxidation, ACS Energy Letters 6 (2021) 2369-2377.

[3] S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber, L. Wang, C. Ponce de León, F.C. Walsh, Electrochemical synthesis of hydrogen peroxide from water and oxygen, Nature Reviews Chemistry 3 (2019) 442-458.

[4] X. Hu, Z. Sun, G. Mei, X. Zhao, B.Y. Xia, B. You, Engineering Nonprecious Metal Oxides Electrocatalysts for Two‐Electron Water Oxidation to H2O2, Advanced Energy Materials 12 (2022) 2201466.

[5] L. Li, Z. Hu, Y. Kang, S. Cao, L. Xu, L. Yu, L. Zhang, J.C. Yu, Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites, Nature communications 14 (2023) 1890.

[6] X. Shi, S. Siahrostami, G.L. Li, Y. Zhang, P. Chakthranont, F. Studt, T.F. Jaramillo, X. Zheng, J.K. Norskov, Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, Nature communications 8 (2017) 701.

[7] T. Kang, B. Li, Q. Hao, W. Gao, F. Bin, K.N. Hui, D. Fu, B. Dou, Efficient Hydrogen Peroxide (H2O2) Synthesis by CaSnO3 via Two-Electron Water Oxidation Reaction, ACS Sustainable Chemistry & Engineering 8 (2020) 15005-15012.

[8] J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B.Y. Xia, G. Feng, M. Liu, L. Huang, Densely Populated Isolated Single Co-N Site for Efficient Oxygen Electrocatalysis, Advanced Energy Materials 9 (2019) 1900149.

[9] C. Zhang, R. Lu, C. Liu, L. Yuan, J. Wang, Y. Zhao, C. Yu, High Yield Electrosynthesis of Hydrogen Peroxide from Water Using Electrospun CaSnO3@Carbon Fiber Membrane Catalysts with Abundant Oxygen Vacancy, Advanced Functional Materials 31 (2021) 2100099.

[10] J. Zhang, G. Zhang, Q. Ji, H. Lan, J. Qu, H. Liu, Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation, Applied Catalysis B: Environmental 266 (2020) 118665.

[11] C. Xia, S. Back, S. Ringe, K. Jiang, F. Chen, X. Sun, S. Siahrostami, K. Chan, H. Wang, Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide, Nature Catalysis 3 (2020) 125-134.

[12] S.R. Kelly, X. Shi, S. Back, L. Vallez, S.Y. Park, S. Siahrostami, X. Zheng, J.K. Nørskov, ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide, ACS Catalysis 9 (2019) 4593-4599.

[13] X. Shi, Y. Zhang, S. Siahrostami, X. Zheng, Light‐Driven BiVO4-C Fuel Cell with Simultaneous Production of H2O2, Advanced Energy Materials 8 (2018) 1801158.

[14] J.H. Baek, T.M. Gill, H. Abroshan, S. Park, X. Shi, J. Nørskov, H.S. Jung, S. Siahrostami, X. Zheng, Selective and Efficient Gd-Doped BiVO4 Photoanode for Two-Electron Water Oxidation to H2O2, ACS Energy Letters 4 (2019) 720-728.

[15] S.Y. Park, H. Abroshan, X. Shi, H.S. Jung, S. Siahrostami, X. Zheng, CaSnO3: An Electrocatalyst for Two-Electron Water Oxidation Reaction to Form H2O2, ACS Energy Letters 4 (2018) 352-357.

[16] Y. Wang, X. Lian, Y. Zhou, W. Guo, H. He, Synthesis and characterization of Sb2O3: a stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes, New Journal of Chemistry 45 (2021) 8958-8964.

[17] L. Li, L. Xu, A.W.M. Chan, Z. Hu, Y. Wang, J.C. Yu, Direct Hydrogen Peroxide Synthesis on a Sn-doped CuWO4/Sn Anode and an Air-Breathing Cathode, Chem. Mater. 34 (2021) 63-71.

[18] S. Mavrikis, M. Göltz, S. Rosiwal, L. Wang, C. Ponce de León, Boron-Doped Diamond Electrocatalyst for Enhanced Anodic H2O2 Production, ACS Applied Energy Materials 3 (2020) 3169-3173.

[19] S.-g. Xue, L. Tang, Y.-k. Tang, C.-x. Li, M.-l. Li, J.-j. Zhou, W. Chen, F. Zhu, J. Jiang, Selective Electrocatalytic Water Oxidation to Produce H2O2 Using a C,N Codoped TiO2 Electrode in an Acidic Electrolyte, ACS applied materials & interfaces 12 (2019) 4423-4431.

[20] M. Zhang, J. Yan, D. Wang, X. Dong, H. Ma, H. Wei, G. Wang, Anodic water oxidation to H2O2 on Fe-doped ZnO for electro-Fenton wastewater purification, Electrochim. Acta 464 (2023) 142940.

[21] Y. Zhang, Z. Lin, D. Zhang, Y. Zheng, M. Huang, C. Jin, J. Zhang, Anodic Water Oxidation to H2O2 on Ov Rich ZnO Nanoparticles for Degradation of Tetracycline, ACS Appl. Nano Mater. 8 (2025) 3356-3367.

[22] J. Zhang, Z. Luo, T. Wang, J. Gong, Highly Efficient Photoelectrochemical H2O2 Production Reaction with CO3O4 as Co-catalysts, Chem. Commun. 54 (2018) 7026-7029.

[23] Z. Wang, M.G. Sendeku, W. Xu, S. Chen, B. Tian, F. Wang, Y. Kuang, X. Sun, Highly efficient paired H2O2 production through 2e- water oxidation coupled with 2e- oxygen reduction, Chem Catalysis 3 (2023) 100672.

[24] L. Li, K. Xiao, P.K. Wong, Z. Hu, J.C. Yu, Hydrogen Peroxide Production from Water Oxidation on a CuWO4 Anode in Oxygen-Deficient Conditions for Water Decontamination, ACS applied materials & interfaces 14 (2022) 7878-7887.

[25] L. Li, J.C. Yu, On‐Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation, Angew.Chem. Int. Ed. 59 (2020) 20538–20544.

[26] Y. Zeng, Electrocatalytic H2O2 generation for disinfection, Chinese Journal of Catalysis 42 (2021) 2149–2163.

[27] J. Zhang, S. Qu, B. Li, R. Yu, L. Ling, X.-Y. Li, Synergetic physical damage and chemical oxidation for highly efficient and residue-free water disinfection, Nature Water 2 (2024) 1226–1237.

[28] K. Yi, High H2O2 production in membrane-free electrolyzer via anodic bubble shielding towards robust rural disinfection, Nature communications 16 (2025) 1893.

Downloads

Published

22-01-2026

How to Cite

Cai, J. (2026). Electrochemical Water Oxidation for Hydrogen Peroxide Generation and Its Applications in Environment Fields. Transactions on Environment, Energy and Earth Sciences, 5, 265-279. https://doi.org/10.62051/kq64xg37