Recent Advances in Suppressing Sn²⁺ Oxidation in Sn–Pb-based Perovskite Solar Cells

Authors

  • Xuchen Xia The Affiliated International School of Shenzhen University, Shenzhen, China

DOI:

https://doi.org/10.62051/bjdv7t74

Keywords:

Perovskite solar cells; Sn–Pb perovskite; Sn²⁺oxidation; Interface engineering.

Abstract

Tin-lead (Sn-Pb) perovskite, a new solar energy material with superior energy-related characteristics, is the material of choice for the next generation of high-efficiency solar panels. Its single big flaw, however, is that the tin is unstable and readily "rusts" or oxidizes, a process that causes defects, which harms the electrical characteristics, constitutes waste of energy, reduces the power output of the solar cell and speeds up its degradation. The answer to this problem is essential. The purpose of this review paper is to survey the various latest ways of inhibiting this tin oxidation. To this end, first the paper discusses the chemical reasons for the instability of the tin. It then goes through the latest approaches in which there are three major approaches: changing the initial formulation of the chemicals so as to offer protection to the tin from the start, addition of some special protecting substances which will act as antioxidants to prevent against or overcome the defects, and lastly the strengthening of the union between the layers making up the solar cell. In analyzing these, it is expected that the problems lying ahead will be brought into sharp focus and this will indicate the field of future research on tin-lead perovskite solar cells, leading to the production of stable high efficiency (Sn-Pb) perovskite solar cells.

Downloads

Download data is not yet available.

References

[1] S.J. Davis, N.S. Lewis, M. Shaner, et al., Net-zero emissions energy systems, Science 360 (2018) eaas9793.

[2] C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy & Environmental Science 9 (2016) 1552-1576.

[3] M. Chen, N. Wang, D. Bai, et al., Revolutionizing perovskite solar cells with carbon electrodes: innovations and economic potential, Advanced Functional Materials 35 (2025) 2422020.

[4] C. Wang, Z. Song, C. Li, et al., Low‐bandgap mixed tin‐lead perovskites and their applications in all‐perovskite tandem solar cells, Advanced Functional Materials 29 (2019) 1808801.

[5] X. Yang, T. Ma, H. Hu, et al., Understanding and manipulating the crystallization of Sn–Pb perovskites for efficient all-perovskite tandem solar cells, Nature Photonics 19 (2025) 426-433.

[6] A. Yadegarifard, H. Lee, H.J. Seok, et al., FA/Cs-based mixed Pb–Sn perovskite solar cells: A review of recent advances in stability and efficiency, Nano Energy 112 (2023) 108481.

[7] H. Lee, S.B. Kang, S. Lee, et al., Progress and outlook of Sn–Pb mixed perovskite solar cells, Nano Convergence 10 (2023) 27.

[8] J. Thiesbrummel, S. Shah, E. Gutierrez-Partida, et al., Ion-induced field screening as a dominant factor in perovskite solar cell operational stability, Nature Energy 9 (2024) 664-676.

[9] M. Awais, R.L. Kirsch, V. Yeddu, et al., Tin halide perovskites going forward: Frost diagrams offer hints, ACS Materials Letters 3 (2011) 299-307.

[10] C. Yuan, M. Chen, D. Wang, et al., Redox shuttle-stabilized tin–lead perovskites for all-perovskite tandem solar cells, ACS Energy Letters (2025) 4749-4757.

[11] J. Liu, H. Yao, S. Wang, et al., Origins and suppression of Sn(II)/Sn(IV) oxidation in tin halide perovskite solar cells, Advanced Energy Materials 13 (2023) 2300696.

[12] D. Ricciarelli, D. Meggiolaro, F. Ambrosio, et al., Instability of tin iodide perovskites: Bulk p-doping versus surface tin oxidation, ACS Energy Letters 5 (2020) 2787-2795.

[13] Y. Zhu, C. Ge, Q. Xu, et al., Simplified surface defects of Sn-Pb perovskite for efficient all-perovskite tandem solar cells, Nano Energy 139 (2025) 110927.

[14] Y. Jiang, Z. Lu, S. Zou, et al., Dual-site passivation of tin-related defects enabling efficient lead-free tin perovskite solar cells, Nano Energy 103 (2022) 107818.

[15] R.L. Milot, M.T. Klug, C.L. Davies, et al., The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films, Advanced Materials 30 (2018) 1804506.

[16] Y. El Ajjouri, A.M. Igual‐Muñoz, M. Sessolo, et al., Tunable wide‐bandgap monohalide perovskites, Advanced Optical Materials 8 (2020) 2000423.

[17] B. Zhang, Z. Zeng, H. Dong, et al., Recent advances in tin halide perovskite solar cells: a critical review, Journal of Materials Chemistry A 13 (2025) 30708-30753.

[18] A. Alsulami, L. Lanzetta, L. Huerta Hernandez, et al., Triiodide formation governs oxidation mechanism of tin–lead perovskite solar cells via A-site choice, Journal of the American Chemical Society 146 (2024) 22970-22981.

[19] G. Zeng, W. Chen, H. Guan, et al., Trapping tetravalent tin and protecting stannous in tin‐lead mixed perovskites for efficient all‐perovskite tandem solar cells, Advanced Functional Materials 35 (2025) 2412458.

[20] M.I. Saidaminov, I. Spanopoulos, J. Abed, et al., Conventional solvent oxidizes Sn(II) in perovskite inks, ACS Energy Letters 5 (2020) 1153-1155.

[21] X. Jiang, H. Li, Q. Zhou, et al., One-step synthesis of SnI2·(DMSO) x adducts for high-performance tin perovskite solar cells, Journal of the American Chemical Society 143 (2021) 10970-10976.

[22] Z. Zhu, C. Ge, D. Liu, et al., Synthesis of stable SnI2· x DMSO adducts toward efficient tin–lead perovskite solar cells, Journal of the American Chemical Society 147 (2025) 18267-18274.

[23] C. Ge, B. Jiang, J. Zhu, et al., Efficient Sn–Pb mixed perovskite solar cells via minimizing solvent oxidation, Advanced Functional Materials 34 (2024) 2400075.

[24] Z. Zhang, J. Liang, J. Wang, et al., DMSO‐free solvent strategy for stable and efficient methylammonium‐free Sn–Pb alloyed perovskite solar cells, Advanced Energy Materials 13 (2023) 2300181.

[25] C. Li, M. Zhu, H. Jiang, et al., Multiple active site additive-mediated suppression of Sn²⁺oxidation and regulation of crystallization for high-performance Sn–Pb mixed perovskite solar cells, Materials Horizons 12 (2025) 4813-4821.

[26] W. Yan, M. Zhu, F. Xin, et al., Alder‐ene reaction‐mediated suppression of tin(II) oxidation for efficient tin‐lead perovskite solar cells, Angewandte Chemie International Edition (2024) e202409072.

[27] S. Jung, Y. Jang, H. Jung, et al., Radical scavenger-driven oxidation prevention and structural stabilization for efficient and stable tin-based perovskite solar cells, Energy & Environmental Science 18 (2025) 6076-6084.

[28] Y. Bai, R. Tian, K. Sun, et al., Decoupling light- and oxygen-induced degradation mechanisms of Sn–Pb perovskites in all perovskite tandem solar cells, Energy & Environmental Science 17 (2024) 8557-8569.

[29] L. Liu, F. Cao, L. Bian, et al., Ascorbic acid-induced porous iodide layer for a high-purity two-step solution-processed tin-lead mixed perovskite photodetector, Journal of Materials Science & Technology 210 (2025) 227-232.

[30] D. He, P. Chen, M. Hao, et al., Accelerated redox reactions enable stable tin‐lead mixed perovskite solar cells, Angewandte Chemie International Edition 63 (2023) e202317446.

[31] Q. Wang, J. Xiong, Y. Xing, et al., Reductive Sn²⁺compensator for efficient and stable Sn‐Pb mixed perovskite solar cells, Advanced Science 11 (2024) 2400962.

[32] K. Jin, Y. Yang, Y. Xia, et al., Regenerative redox cycling enables stable tin perovskite photovoltaics, Advanced Materials (2025) e14719.

[33] L. Geng, Y. Ma, Y. Sun, et al., Bilateral anchoring for enhanced mechanical stability and efficiency in flexible all‐perovskite tandem solar cells, Advanced Materials 37 (2025) 2419018.

[34] L. Chen, C. Li, Y. Xian, et al., Incorporating potassium citrate to improve the performance of tin‐lead perovskite solar cells, Advanced Energy Materials 13 (2Example: 2301218.

[35] G. Li, C. Wang, S. Fu, et al., Boosting all‐perovskite tandem solar cells by revitalizing the buried tin‐lead perovskite interface, Advanced Materials (2025) 2401698.

[36] Y. Zhou, Z. Wang, J. Jin, et al., Manipulation of the buried interface for robust formamidinium‐based Sn − Pb perovskite solar cells with NiOx hole‐transport layers, Angewandte Chemie International Edition 62 (2023) e202300759.

[37] W. Zhang, H. Liu, T. Huang, et al., Oriented molecular dipole‐enabled modulation of NiO x /perovskite interface for Pb‐Sn mixed inorganic perovskite solar cells, Advanced Materials 37 (2025) 2414125.

[38] H. Yuan, X. Li, W. Zhang, et al., Efficient Sn‐Pb perovskite solar cells through inhibiting hole accumulation, Advanced Materials 37 (2025) 2502680.

[39] S. Jiang, S. Xiong, Z. Yuan, et al., Interfacial energetics reversal strategy for efficient perovskite solar cells, Advanced Materials 37 (2025) 2503110.

[40] J. He, J. Zhang, Y. Zhang, et al., Organic crosslinked tin oxide mitigating buried interface defects for efficient and stable perovskite solar cells, ACS Energy Letters 64 (2025) e202419957.

[41] Y. Lai, X. Xu, X. Tang, et al., Multifunctional passivator enables high-efficient gas-quenching Sn–Pb perovskite solar cells, ACS Energy Letters 10 (2025) 4131-4139.

[42] J. Wang, S. Hu, H. Zhu, et al., Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics, Nature Communications 16 (2025) 4917.

Downloads

Published

22-01-2026

How to Cite

Xia, X. (2026). Recent Advances in Suppressing Sn²⁺ Oxidation in Sn–Pb-based Perovskite Solar Cells. Transactions on Environment, Energy and Earth Sciences, 5, 174-183. https://doi.org/10.62051/bjdv7t74